

2015 ALCAS Agrifood LCA Conference:

Triple bottom line analysis of food systems & food waste

Joe Lane

Research Fellow, Uni of Qld j.lane1@uq.edu.au

Beatriz Reutter

PhD student, UQ

Michalis Hadjikakou

Research Fellow, UNSW

eeIO for coupled socio-\$-enviro analysis

Use (demand)

	Agriculture	Mining	Plastic	Restaurants
Agriculture	20			40
Mining	30	2	30	10
Plastic	10	10	4	20
Restaurants	10	10	0	30

Consumptive dema	ınd
------------------	-----

householders	Government		Export
22		1	44
33		2	11
11		1	33
55			0

ည	
5	
S	
g	
.⊨	
四	

Supply

Value added (\$)	2	11	2	5
employment	2	14	1	6
Water Use	23	1	1	1
GHG	7	3	4	1

		Region 1				Region 2				
		S1	S2	S3	Final Deman	nd S	51	S2	S 3	Final Demand
1	S1									
on	S2		internal R1			trade fr			le from	
Region	S 3		t	ran:	sactions				R1	to R2
R	Value Added									
2	S1									
on	S2		1	trac	le from			iı	ntei	rnal R2
Region	S 3			<i>R2</i>	to R1			tr	ans	sactions
Re	Value Added									

1) macro-LCA & supply-chain analysis

1) macro-LCA & supply-chain analysis

Reutter et al (in press) Food Waste consequences: eelO as a framework for analysis

2) micro-LCA by consumer

2009 avg Australian household 'foodprints' (prelim results)

Variation (from avg) by demographic

A - Exclusive Environs

+29 % +14 %

(8.3% of households) The most prosperous & desirable family households

C – Independence & Careers

+4 %

-8 %

(9.5% of households) Apartment-dwelling, young professionals & students in city central locations

H - Middle Australia

-7 %

(7.2% of households)

+1 % Mixed family forms living on the outskirts of metropolitan areas

If interested, contact: Michalis Hadjikakou (m.hadjikakou @unsw.edu.au)

3) micro-LCA by product (using eeIO)

e.g. analyse specific products or supply chains

e.g. analyse specific food-waste interventions

how good is the enviro-LCI for each sector & supply chain stage

? quality of the source enviro-data

? consistency with high-quality process-LCI

? allocation of impacts up the supply chain

increase number of sectors / regions

4) food waste - challenging the rhetoric

food production causes lots of enviro impact

a lot of food is wasted

lets reduce food waste to save the environment

who are the winners & losers...?

where is the food wasted...?

are there enviro tradeoffs...?

which are the greatest opportunities...?

how to model the effect of interventions...?

4) food waste - messy data & literature

4) food waste – Australian significance

Reutter et al (in press) Food Waste consequences: eelO as a framework for analysis

4) food waste – varying tradeoffs

Reutter et al (in press) Food Waste consequences: eelO as a framework for analysis

4) food waste – sectoral significance

4) food waste – limited Australian data

4) estimating food flows – can you help?

Thank you

University of Queensland

Joe Lane (j.lane1 @uq.edu.au)

Beatriz Reutter (b.reutter @uq.edu.au)

University of New South Wales

Michalis Hadjikakou (m.hadjikakou @unsw.edu.au)

the Australian IELab

http://ielab.info

https://nectar.org.au/industrial-ecology-virtual-laboratory